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§1 Introduction

.

......

R an integral domain

M , N finitely generated torsionfree R-modules

.
Question
..
......When is the tensor product M ⊗R N torsionfree?
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.
Auslander-Reiten conjecture
..

......

Let R be a commutative Noetherian ring, M a finitely generated
R-module. If

ExtiR(M,M ⊕R) = (0) for ∀i > 0,

then M is projective.

.
Huneke-Wiegand conjecture
..

......

Let R be a Gorenstein local domain, M a torsionfree R-module. If

M ⊗R HomR(M,R) is reflexive,

then M is free.
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.
Theorem 1.1 ([3, 4, 6])
..

......

Consider the following conditions.

(1) (HWC) holds for Gorenstein local domains.

(2) (HWC) holds for one-dimensional Gorenstein local domains.

(3) (ARC) holds for Gorenstein local domains.

Then the implications (1) ⇐⇒ (2) =⇒ (3) hold.
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.
Conjecture 1.2
..

......

Let R be a Gorenstein local domain with dimR = 1 and I an ideal of R.
If I ⊗R HomR(I,R) is torsionfree, then I is principal.

In my talk, we are interested in the question of what happens if we replace
HomR(I,R) by HomR(I,KR).

.
Conjecture 1.3
..

......

Let R be a C-M local ring with dimR = 1 and assume ∃KR. Let I be a
faithful ideal of R. If I ⊗R HomR(I,KR) is torsionfree, then I ∼= R or KR

as an R-module.
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.
Advantages
..

......

∃ symmetry between I and I∨ := HomR(I,KR).

Change of rings.

Unfortunately,

e(R) = 9 · · · Conjecture 1.3 is not true in general.

e(R) = 7, 8 · · · We don’t know whether Conjecture 1.3 is true or not.
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.
Theorem 1.4 (Main Theorem)
..

......

Let R be a C-M local ring with dimR = 1 and assume ∃KR. Let I be a
faithful ideal of R.

(1) Assume that the canonical map

t : I ⊗R HomR(I,KR) → KR, x⊗ f 7→ f(x)

is an isomorphism. If r, s ≥ 2, then

e(R) > (r + 1)s ≥ 6,

where r = µR(I) and s = µR(HomR(I,KR)).

(2) Suppose that I ⊗R HomR(I,KR) is torsionfree. If e(R) ≤ 6, then
I ∼= R or KR.
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Higher dimensional assertion is the following.

.
Corollary 1.5
..

......

Let R be a C-M local ring with dimR ≥ 1, I a faithful ideal of R.
Assume that

Rp is Gorenstein, and

e(Rp) ≤ 6

for every height one prime p.

If I ⊗R HomR(I,R) is reflexive, then I is principal.
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...2 Change of rings

...3 Proof of Theorem 1.4

...4 Numerical semigroup rings and monomial ideals
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...7 Examples
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Notation

In what follows, unless other specified, we assume

.

......

...1 (R,m) a C-M local ring with dimR = 1

...2 F = Q(R) the total ring of fractions of R

...3 F = {I | I is a fractional ideal such that FI = F}

...4 ∃ a canonical module KR of R

...5 M∨ := HomR(M,KR) for each R-module M

...6 µR(M) := ℓR(M/mM) for each R-module M

Naoki Taniguchi (Meiji University) Huneke-Wiegand conjecture March 11, 2015 10 / 44



. . . . . .

Intro Change of rings Proof of Thm 1.4 Semigroup rings The case where e(R) = 7 Torsion part Examples References

§2 Change of rings

Let I ∈ F . Denote by

t : I ⊗R I
∨ → KR, x⊗ f 7→ f(x).

Then the diagram

F ⊗R (I ⊗R I
∨)

∼=−−−−→ F ⊗R KR

α

x x
I ⊗R I

∨ t−−−−→ KR

is commutative. Hence

T := T(I ⊗R I
∨) = Ker t.

.
Lemma 2.1
..
......I ⊗R I

∨ is torsionfree ⇐⇒ t : I ⊗R I
∨ −→ KR is injective.
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We set L = Im(I ⊗R I
∨ t−→ KR). Look at the exact sequence

0 → T → I ⊗R I
∨ t−→ L→ 0.

Therefore we have

L∨ ∼= (I ⊗R I
∨)∨ = HomR(I, I

∨∨) ∼= I : I =: B ⊆ F.

Let R ⊆ S ⊆ B. Then I is also a fractional ideal of S,

L = L∨∨ = B∨ = KB ⊆ S∨ = KS and

HomS(I,KS) = HomS(I,HomR(S,KR))
∼= HomR(I ⊗S S,KR) = HomR(I,KR) = I∨.
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Therefore the diagram

I ⊗S HomS(I,KS)
tS−−−→ KS

ρ

x ι

x
I ⊗R I∨

t−−−→ L

is commutative, where ρ(x⊗ f) = x⊗ f .
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.
Lemma 2.2
..

......

Let I ∈ F and R ⊆ S ⊆ B := I : I. If I ⊗R I
∨ is torsionfree, then

I ⊗S HomS(I,KS)

is a torsionfree S-module and

ρ : I ⊗R I
∨ → I ⊗S HomS(I,KS)

is bijective.

In particular, if S = B, then

tB : I ⊗B HomB(I,KB) → KB, x⊗ f 7→ f(x)

is an isomorphism of B-modules.
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.
Proposition 2.3 (Change of rings)
..

......

Let I ∈ F and assume that I ⊗R I
∨ is torsionfree. If R ⊆ ∃S ⊆ B such

that
I ∼= S or KS as an S-module,

then
I ∼= R or KR as an R-module.

.
Proof.
..

......

Suppose I ∼= S and consider

I ⊗R I
∨ ρ∼= I ⊗S HomS(I,KS) ∼= HomS(I,KS) ∼= I∨.

Then µR(I)·µR(I∨) = µR(I
∨), so that I ∼= R, since µR(I) = 1.
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§3 Proof of Theorem 1.4

.
Theorem 3.1 (Theorem 1.4)
..

......

Let I be a faithful ideal of R.

(1) Assume that
t : I ⊗R I

∨ → KR, x⊗ f 7→ f(x)

is an isomorphism. If r, s ≥ 2, then

e(R) > (r + 1)s ≥ 6,

where r = µR(I) and s = µR(I
∨).

(2) Suppose that I ⊗R I
∨ is torsionfree. If e(R) ≤ 6, then I ∼= R or KR.
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.
Proof of assertion (1) of Theorem 1.4
..

......

Choose f ∈ m such that fR is a reduction of m. Let

S = R/fR, n = m/fR and M = I/fI.

Hence
µS(M) = r, rS(M) = ℓS((0) :M n) = s.

We write M = Sx1 + Sx2 + · · ·+ Sxr and look at

(♯0) 0 → X → S⊕r φ−→M → 0, φ(ei) = xi.

We get
(♯1) 0 →M∨ → K⊕r

S → X∨ → 0,

(♯2) 0 → HomS(M,M) →M⊕r → HomS(X,M).
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.
Proof of assertion (1) of Theorem 1.4
..

......

Since S = HomS(M,M), we have by (♯2)

(♯3) 0 → S
ψ−→M⊕r → HomS(X,M),

where ψ(1) = (x1, x2, . . . , xr).

By
(♯0) 0 → X → S⊕r φ−→M → 0.

we get
ℓS(X) = r·ℓS(S)− ℓS(M) = re− e = (r − 1)e,

where e = e(R).
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.
Proof of assertion (1) of Theorem 1.4
..

......

By
(♯1) 0 →M∨ → K⊕r

S → X∨ → 0,

we have

q := µS(X
∨) ≥ µS(K

⊕r
S )− µS(M

∨) = r·µS(KS)− rS(M).

Therefore

(r − 1)e = ℓS(X) ≥ ℓS((0) :X n) = q ≥ r2s− s = s(r2 − 1).

Thus
e ≥ s(r + 1),

since r ≥ 2.
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.
Proof of assertion (1) of Theorem 1.4.
..

......

Suppose that e = s(r + 1). Then n·HomS(X,M) = (0). By

(♯3) 0 → S
ψ−→M⊕r → HomS(X,M),

we have
n·M⊕r ⊆ S·(x1, x2, . . . , xr),

and therefore
n2M = (0).

Thus nM ⊆ (0) :M n. Consequently

s = rS(M) = ℓS((0) :M n) ≥ ℓS(nM) = ℓS(M)− ℓS(M/nM)

= e− r = s(r + 1)− r.

Hence 0 ≥ rs− r = r(s− 1), which is impossible.
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.
Corollary 3.2
..

......

Let R be a Gorenstein local ring with dimR = 1 and e(R) ≤ 6. Let I be
a faithful ideal of R. If

I ⊗R HomR(I,R) is torsionfree,

then I is principal.
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We also prove the following theorems.

.
Theorem 3.3
..

......

Assume that mR ⊆ R. Let I be a faithful fractional ideal of R. If I ⊗R I
∨

is torsionfree, then I ∼= R or KR.

Here R stands for the integral closure of R.

.
Theorem 3.4
..

......

Assume that µR(m) = e(R). Let I be a faithful ideal of R. If
I ⊗R I

∨ ∼= KR, then I ∼= R or KR.
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Let k be a field.
.
Proposition 3.5
..

......

Let R = k[[ta, ta+1, . . . , t2a−1]] (a ≥ 1) be the semigroup ring and I ̸= (0)
an ideal of R. If I ⊗R I

∨ is torsionfree, then I ∼= R or KR.

.
Corollary 3.6
..

......

Let R = k[[ta, ta+1, . . . , t2a−2]] (a ≥ 3) be the semigroup ring and I an
ideal of R. If I ⊗R HomR(I,R) is torsionfree, then I is principal.
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.
Proof of Corollary 3.6.
..

......

Notice that R is a Gorenstein local ring with R : m = R+ kt2a−1.
Suppose that I ̸∼= R. Then R ⊊ B := I : I and therefore

t2a−1 ∈ B,

whence
R ⊆ S := k[[ta, ta+1, . . . , t2a−1]] ⊆ B.

Therefore I ⊗S HomS(I,KS) is S-torsionfree, so that

I ∼= S or I ∼= KS

as an S-module by Proposition 3.5. Hence I ∼= R by Change of rings,
which is contradiction.
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.
Remark 3.7
..

......

Corollary 3.6 gives a new class of one-dimensional Gorenstein local
domains for which Conjecture 1.2 holds true.

For example, take a = 5. Then

R = k[[t5, t6, t7, t8]]

is Gorenstein, but not complete intersection.

.
Conjecture 1.2
..

......

Let R be a Gorenstein local domain with dimR = 1 and I an ideal of R.
If I ⊗R HomR(I,R) is torsionfree, then I is principal.
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§4 Numerical semigroup rings

.
Setting 4.1
..

......

Let 0 < a1 < a2 < · · · < aℓ ∈ Z such that gcd(a1, a2, . . . , aℓ) = 1.

We set

H = ⟨a1, a2, . . . , aℓ⟩ := {
∑ℓ

i=1 ciai | 0 ≤ ci ∈ Z}

R = k[[H]] := k[[ta1 , ta2 , . . . , taℓ ]] ⊆ V = k[[t]]

m = (ta1 , ta2 , . . . , taℓ) the maximal ideal of R

c = c(H) := max(Z \H) + 1 the conductor of H

c := R : V = tcV
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Notice that

R is a C-M local domain with dimR = 1 and V = R.

e(R) = a1 = µR(V ).

.
Definition 4.2
..

......

Let I ∈ F . Then I is said to be a monomial ideal, if

I =
∑
n∈Λ

Rtn

for some Λ ⊆ Z.

Set
M = {I ∈ F | I is a monomial ideal}.
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Passing to the monomial ideal t−qI for some q ∈ Z, we may assume

R ⊆ I ⊆ V .

A canonical ideal KR of R is given by

KR =
∑

n∈Z\H

Rta−n

where a = c(H)− 1 (= max(Z \H)). Therefore

a− n ̸∈ H ⇐⇒ tn ∈ KR

for ∀n ∈ Z.
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From now on, we assume that e(R) = a1 ≥ 2. Set

αi = max{n ∈ Z \H | n ≡ i mod e} (0 ≤ i ≤ e− 1)

and
S = {αi | 1 ≤ i ≤ e− 1}.

Hence

α0 = − e(R), ♯S = e(R)− 1, a = maxS and αi ≥ i (1 ≤ ∀i ≤ e− 1).

.
Fact 4.3
..

......

KR =
∑

s∈S Rt
a−s.

{ta−s | s ∈ S s.t. ts ∈ R : m} forms a minimal system of generators
for KR.
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.
Example 4.4
..

......

Let H = ⟨7, 8, 10⟩. The figure of H is the following (the gray part).

0 1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 · · ·

We have c = c(H) = 20, a = 19,

S = {1, 9, 3, 11, 19, 13}, and
a− S = {18, 10, 16, 8, 0, 6}.

Therefore
KR = (t18, t10, t16, t8, 1, t6) = (1, t6).
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The goal of this section is the following.
.
Theorem 4.5
..

......

Let b = minS and suppose tb ∈ R : m. Let I ∈ M such that R ⊆ I ⊆ V .
If I ⊗R I

∨ ∼= KR, then I ∼= R or KR.

.
Corollary 4.6
..

......

Suppose that µR(m) = e(R). Let I ∈ M such that R ⊆ I ⊆ V . If
I ⊗R I

∨ ∼= KR, then I ∼= R or I ∼= KR.
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.
Example 4.7
..

......

Let H = ⟨7, 22, 23, 25, 38, 40⟩. Then S = {15, 16, 18, 33, 41}. We have
a = 41, b = 15, and

m·t15 ⊆ R,

but
µR(m) = 6 < e(R) = 7.
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§5 The case where e(R) = 7

In this section, we maintain Setting 4.1.

.
Lemma 5.1
..

......

Let I ∈ M such that R ⊆ I ⊆ V . Suppose that

µR(I) = µR(J) = 2, IJ = KR and µR(KR) = 4.

Then
e(R) = a1 ≥ 8,

where J = KR : I.
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.
Theorem 5.2
..

......

Suppose that e(R) = a1 ≤ 7. Let I ∈ M. If I ⊗R I
∨ is torsionfree, then

I ∼= R or KR.

.
Proof.
..

......

We may assume that I ⊗R I
∨ ∼= KR. Suppose that I ̸∼= R and I ̸∼= KR.

Then

4 ≤ µR(I)·µR(I∨) = µR(KR) = r(R) ≤ e(R)− 1 ≤ 6.

If r(R) = 6, then r(R) = e(R)− 1. Thus

µR(m) = e(R) = 7

which is contradiction. Hence r(R) = 4, so that µR(I) = µR(I
∨) = 2

which violates Lemma 5.1.
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.
Corollary 5.3
..

......

Suppose that R = k[[H]] is Gorenstein with e(R) ≤ 7. Let I ∈ M. If

I ⊗R HomR(I,R) is torsionfree,

then I is principal.
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§6 How to compute the torsion part T(I ⊗R J)

Let (R,m) be a C-M local ring with dimR = 1. Let

I = (1, f) (= R+Rf) ∈ F

where f ∈ F \R.

.
Theorem 6.1
..

......

Let J ∈ F . Then

(J : I)/(R : I)J ∼= T(I ⊗R J), c 7−→ f ⊗ c− 1⊗ cf

as an R-module.
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§7 Examples

Let I ∈ M. We set J = KR : I.

Condition : IJ = KR and µR(KR) = 4

.
Example 7.1
..

......

Let R = k[[t8, t11, t14, t15]]. Then KR = (1, t, t3, t4). We take I = (1, t)
and set J = KR : I. Then

J = (1, t3), IJ = KR and µR(KR) = 4,

but
T(I ⊗R J) ∼= R/m.
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.
Proof of Example 7.1
..

......

The figure of H = ⟨8, 11, 14, 15⟩ is the following.

0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31
32 · · ·

We have c(H) = 22, a = 21. Then KR = (1, t, t3, t4). Let I = (1, t).
Then

J = KR : I = (tn | n ∈ Z s.t. 21− n, 20− n /∈ H)

= (1, t3).

Hence IJ = KR, µR(I) = µR(J) = 2 and µR(KR) = 4.
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.
Proof of Example 7.1
..

......

0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31
32 · · ·

Since R : I = (tn | n ∈ H,n+ 1 ∈ H) = (t14, t15, t24, t27), we get

(R : I)J = (t14, t15, t17, t18, t24, t27).

On the other hand,

J : I = (tn | 21− n, 20− n, 19− n /∈ H)

= (t14, t15, t16, t17, t18).

Hence t16 /∈ (R : I)J and m·t16 ⊆ (R : I)J . Thus

T(I ⊗R J) ∼= (J : I)/(R : I)J = Rt16 ∼= R/m.
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.
Remark 7.2
..

......

In the ring R of Example 7.1 ̸ ∃ monomial ideals I such that
I ≇ R, I ≇ KR, and I ⊗R I

∨ is torsionfree.
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The following ideals also satisfy

IJ = KR and µR(KR) = 4

but I ⊗R I
∨ is not torsionfree.

.

......

H = ⟨8, 9, 10, 13⟩ ,KR = (1, t, t3, t4), I = (1, t).

H = ⟨8, 11, 12, 13⟩ ,KR = (1, t, t3, t4), I = (1, t).

H = ⟨8, 11, 14, 23⟩ ,KR = (1, t3, t9, t12), I = (1, t3).

H = ⟨8, 13, 17, 18⟩ ,KR = (1, t, t5, t6), I = (1, t).

H = ⟨8, 13, 18, 25⟩ ,KR = (1, t5, t7, t12), I = (1, t5).
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If e(R) ≥ 9, then Conjecture 1.3 is not true in general.

.
Example 7.3
..

......

Let R = k[[t9, t10, t11, t12, t15]]. Then KR = (1, t, t3, t4). Let I = (1, t)
and put J = KR : I. Then

J = (1, t3), µR(I) = µR(J) = 2 and µR(KR) = 4,

but I ⊗R I
∨ is torsionfree.
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Thank you very much for your attention.
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