Huneke-Wiegand conjecture and change of rings

Naoki Taniguchi

Meiji University

Joint work with S. Goto, R. Takahashi and H. L. Truong

Algebra seminar at University of Connecticut

March 11, 2015

§1 Introduction

- $\bullet \ R$ an integral domain
- M, N finitely generated <u>torsionfree</u> R-modules

Question When is the tensor product $M \otimes_R N$ <u>torsionfree</u>?

§1 Introduction

- \bullet R an integral domain
- M, N finitely generated <u>torsionfree</u> R-modules

Question When is the tensor product $M \otimes_R N$ torsionfree?

Auslander-Reiten conjecture

Let R be a commutative Noetherian ring, M a finitely generated R-module. If

 $\operatorname{Ext}_{R}^{i}(M, M \oplus R) = (0) \text{ for } \forall i > 0,$

then M is projective.

Huneke-Wiegand conjecture

Let R be a Gorenstein local domain, M a torsionfree R-module. If

 $M \otimes_R \operatorname{Hom}_R(M, R)$ is reflexive,

then M is free.

Auslander-Reiten conjecture

Let R be a commutative Noetherian ring, M a finitely generated R-module. If

 $\operatorname{Ext}_{R}^{i}(M, M \oplus R) = (0) \text{ for } \forall i > 0,$

then M is projective.

Huneke-Wiegand conjecture

Let R be a Gorenstein local domain, M a torsionfree R-module. If

 $M \otimes_R \operatorname{Hom}_R(M, R)$ is reflexive,

then M is free.

Theorem 1.1 ([3, 4, 6])

Consider the following conditions.

- (1) (HWC) holds for Gorenstein local domains.
- (2) (HWC) holds for one-dimensional Gorenstein local domains.
- (3) (ARC) holds for Gorenstein local domains.

Then the implications $(1) \iff (2) \implies (3)$ hold.

Conjecture 1.2

Let R be a Gorenstein local domain with dim R = 1 and I an ideal of R. If $I \otimes_R \operatorname{Hom}_R(I, R)$ is torsionfree, then I is principal.

In my talk, we are interested in the question of what happens if we replace $\operatorname{Hom}_R(I,R)$ by $\operatorname{Hom}_R(I,\operatorname{K}_R)$.

Conjecture 1.3

Let R be a C-M local ring with dim R = 1 and assume $\exists K_R$. Let I be a faithful ideal of R. If $I \otimes_R \operatorname{Hom}_R(I, K_R)$ is torsionfree, then $I \cong R$ or K_R as an R-module.

(日) (同) (三) (三)

Conjecture 1.2

Let R be a Gorenstein local domain with dim R = 1 and I an ideal of R. If $I \otimes_R \operatorname{Hom}_R(I, R)$ is torsionfree, then I is principal.

In my talk, we are interested in the question of what happens if we replace $\operatorname{Hom}_R(I,R)$ by $\operatorname{Hom}_R(I,\operatorname{K}_R)$.

Conjecture 1.3

Let R be a C-M local ring with dim R = 1 and assume $\exists K_R$. Let I be a faithful ideal of R. If $I \otimes_R \operatorname{Hom}_R(I, K_R)$ is torsionfree, then $I \cong R$ or K_R as an R-module.

イロト イ理ト イヨト イヨト

Advantages

- \exists symmetry between I and $I^{\vee} := \operatorname{Hom}_R(I, \operatorname{K}_R)$.
- Change of rings.

Unfortunately,

- $e(R) = 9 \cdots$ Conjecture 1.3 is <u>not true</u> in general.
- $e(R) = 7, 8 \cdots$ We don't know whether Conjecture 1.3 is true or not.

/₽ ▶ < ∃ ▶ < ∃

Advantages

- \exists symmetry between I and $I^{\vee} := \operatorname{Hom}_R(I, \operatorname{K}_R)$.
- Change of rings.

Unfortunately,

- $e(R) = 9 \cdots$ Conjecture 1.3 is <u>not true</u> in general.
- $e(R) = 7, 8 \cdots$ We don't know whether Conjecture 1.3 is true or not.

Theorem 1.4 (Main Theorem)

Let R be a C-M local ring with dim R = 1 and assume $\exists K_R$. Let I be a faithful ideal of R.

(1) Assume that the canonical map $t: I \otimes_R \operatorname{Hom}_R(I, \operatorname{K}_R) \to \operatorname{K}_R, \ x \otimes f \mapsto f(x)$ is an <u>isomorphism</u>. If $r, s \ge 2$, then $e(R) > (r+1)s \ge 6$, where $r = \mu_R(I)$ and $s = \mu_R(\operatorname{Hom}_R(I, \operatorname{K}_R))$.

(2) Suppose that $I \otimes_R \operatorname{Hom}_R(I, \operatorname{K}_R)$ is torsionfree. If $e(R) \leq 6$, then $I \cong R$ or K_R .

Higher dimensional assertion is the following.

Corollary 1.5

Let R be a C-M local ring with dim $R \ge 1$, I a faithful ideal of R. Assume that

- $R_{\mathfrak{p}}$ is Gorenstein, and
- $e(R_p) \le 6$

for every height one prime p.

If $I \otimes_R \operatorname{Hom}_R(I, R)$ is <u>reflexive</u>, then I is principal.

Contents

- Introduction
- Ohange of rings
- Proof of Theorem 1.4
- Numerical semigroup rings and monomial ideals
- The case where e(R) = 7
- How to compute the torsion part $T(I \otimes_R J)$

Examples

Notation

In what follows, unless other specified, we assume

9
$$(R, \mathfrak{m})$$
 a C-M local ring with $\dim R = 1$

- 2 F = Q(R) the total ring of fractions of R
- \exists a canonical module K_R of R
- $M^{\vee} := \operatorname{Hom}_R(M, \operatorname{K}_R)$ for each R-module M
- $\mu_R(M) := \ell_R(M/\mathfrak{m}M)$ for each *R*-module *M*

§2 Change of rings

Let $I \in \mathcal{F}$. Denote by

$$t: I \otimes_R I^{\vee} \to \mathcal{K}_R, \ x \otimes f \mapsto f(x).$$

Then the diagram

$$F \otimes_R (I \otimes_R I^{\vee}) \xrightarrow{\cong} F \otimes_R \mathbf{K}_R$$

$$\stackrel{\alpha}{\uparrow} \qquad \qquad \uparrow$$

$$I \otimes_R I^{\vee} \xrightarrow{t} \mathbf{K}_R$$

is commutative. Hence

$$T := \mathrm{T}(I \otimes_R I^{\vee}) = \mathrm{Ker}\, t.$$

Lemma 2.1 $I \otimes_R I^{\vee}$ is torsionfree $\iff t : I \otimes_R I^{\vee} \longrightarrow K_R$ is injective.

Naoki Taniguchi (Meiji University)

§2 Change of rings

Let $I \in \mathcal{F}$. Denote by

$$t: I \otimes_R I^{\vee} \to \mathcal{K}_R, \ x \otimes f \mapsto f(x).$$

Then the diagram

$$F \otimes_R (I \otimes_R I^{\vee}) \xrightarrow{\cong} F \otimes_R \mathbf{K}_R$$

$$\stackrel{\alpha}{\uparrow} \qquad \qquad \uparrow$$

$$I \otimes_R I^{\vee} \xrightarrow{t} \mathbf{K}_R$$

is commutative. Hence

$$T := \mathrm{T}(I \otimes_R I^{\vee}) = \mathrm{Ker}\, t.$$

Lemma 2.1 $I \otimes_R I^{\vee}$ is torsionfree $\iff t : I \otimes_R I^{\vee} \longrightarrow K_R$ is injective. We set $L = \operatorname{Im}(I \otimes_R I^{\vee} \xrightarrow{t} K_R)$. Look at the exact sequence

$$0 \to T \to I \otimes_R I^{\vee} \xrightarrow{t} L \to 0.$$

Therefore we have

$$L^{\vee} \cong (I \otimes_R I^{\vee})^{\vee} = \operatorname{Hom}_R(I, I^{\vee \vee}) \cong I : I =: B \subseteq F.$$

Let $R \subseteq S \subseteq B$. Then I is also a fractional ideal of S,

$$L = L^{\vee \vee} = B^{\vee} = \mathcal{K}_B \subseteq S^{\vee} = \mathcal{K}_S \text{ and}$$
$$\operatorname{Hom}_S(I, \mathcal{K}_S) = \operatorname{Hom}_S(I, \operatorname{Hom}_R(S, \mathcal{K}_R))$$
$$\cong \operatorname{Hom}_R(I \otimes_S S, \mathcal{K}_R) = \operatorname{Hom}_R(I, \mathcal{K}_R) = I^{\vee}.$$

We set $L = \operatorname{Im}(I \otimes_R I^{\vee} \xrightarrow{t} K_R)$. Look at the exact sequence

$$0 \to T \to I \otimes_R I^{\vee} \xrightarrow{t} L \to 0.$$

Therefore we have

$$L^{\vee} \cong (I \otimes_R I^{\vee})^{\vee} = \operatorname{Hom}_R(I, I^{\vee \vee}) \cong I : I =: B \subseteq F.$$

Let $R \subseteq S \subseteq B$. Then I is also a fractional ideal of S,

$$L = L^{\vee \vee} = B^{\vee} = \mathcal{K}_B \subseteq S^{\vee} = \mathcal{K}_S \text{ and}$$
$$\operatorname{Hom}_S(I, \mathcal{K}_S) = \operatorname{Hom}_S(I, \operatorname{Hom}_R(S, \mathcal{K}_R))$$
$$\cong \operatorname{Hom}_R(I \otimes_S S, \mathcal{K}_R) = \operatorname{Hom}_R(I, \mathcal{K}_R) = I^{\vee}.$$

Therefore the diagram

$$I \otimes_{S} \operatorname{Hom}_{S}(I, \operatorname{K}_{S}) \xrightarrow{t_{S}} \operatorname{K}_{S}$$

$$\rho \uparrow \qquad \iota \uparrow$$

$$I \otimes_{R} I^{\vee} \xrightarrow{t} L$$

is commutative, where $\rho(x \otimes f) = x \otimes f$.

Lemma 2.2 Let $I \in \mathcal{F}$ and $R \subseteq S \subseteq B := I : I$. If $I \otimes_R I^{\vee}$ is torsionfree, then $I \otimes_S \operatorname{Hom}_S(I, \operatorname{K}_S)$ is a torsionfree S-module and

 $\rho: I \otimes_R I^{\vee} \to I \otimes_S \operatorname{Hom}_S(I, \operatorname{K}_S)$

is bijective.

In particular, if S = B, then

 $t_B: I \otimes_B \operatorname{Hom}_B(I, \operatorname{K}_B) \to \operatorname{K}_B, \ x \otimes f \mapsto f(x)$

is an isomorphism of B-modules.

3

(日) (周) (三) (三)

Proposition 2.3 (Change of rings)

Let $I \in \mathcal{F}$ and assume that $I \otimes_R I^{\vee}$ is torsionfree. If $R \subseteq \exists S \subseteq B$ such that

 $I \cong S$ or K_S as an S-module,

then

 $I \cong R$ or K_R as an R-module.

Proof.

Suppose $I \cong S$ and consider

 $I \otimes_R I^{\vee} \stackrel{\nu}{\cong} I \otimes_S \operatorname{Hom}_S(I, \operatorname{K}_S) \cong \operatorname{Hom}_S(I, \operatorname{K}_S) \cong I^{\vee}.$

Then $\mu_R(I) \cdot \mu_R(I^{\vee}) = \mu_R(I^{\vee})$, so that $I \cong R$, since $\mu_R(I) = 1$.

Proposition 2.3 (Change of rings)

Let $I \in \mathcal{F}$ and assume that $I \otimes_R I^{\vee}$ is torsionfree. If $R \subseteq \exists S \subseteq B$ such that

$$I \cong S$$
 or K_S as an S-module,

then

 $I \cong R$ or K_R as an R-module.

Proof.

Suppose $I \cong S$ and consider

$$I \otimes_R I^{\vee} \stackrel{\rho}{\cong} I \otimes_S \operatorname{Hom}_S(I, \mathcal{K}_S) \cong \operatorname{Hom}_S(I, \mathcal{K}_S) \cong I^{\vee}.$$

Then $\mu_R(I) \cdot \mu_R(I^{\vee}) = \mu_R(I^{\vee})$, so that $I \cong R$, since $\mu_R(I) = 1$.

<ロト <回ト < 回ト < 回ト < 回ト = 三日

§3 Proof of Theorem 1.4

Theorem 3.1 (Theorem 1.4)

Let I be a faithful ideal of R.

(1) Assume that

 $t: I \otimes_R I^{\vee} \to \mathcal{K}_R, \ x \otimes f \mapsto f(x)$

is an isomorphism. If $r, s \geq 2$, then

$$\mathbf{e}(R) > (r+1)s \ge 6,$$

where $r = \mu_R(I)$ and $s = \mu_R(I^{\vee})$.

(2) Suppose that $I \otimes_R I^{\vee}$ is torsionfree. If $e(R) \leq 6$, then $I \cong R$ or K_R .

Proof of assertion (1) of Theorem 1.4

Choose $f\in\mathfrak{m}$ such that fR is a reduction of $\mathfrak{m}.$ Let

S = R/fR, $\mathfrak{n} = \mathfrak{m}/fR$ and M = I/fI.

Hence

$$\mu_S(M) = r, \quad \mathbf{r}_S(M) = \ell_S((0) :_M \mathfrak{n}) = s.$$

We write $M = Sx_1 + Sx_2 + \cdots + Sx_r$ and look at

$$(\sharp_0) \quad 0 \to X \to S^{\oplus r} \xrightarrow{\varphi} M \to 0, \quad \varphi(\mathbf{e_i}) = x_i.$$

We get

$$(\sharp_1) \quad 0 \to M^{\vee} \to \mathcal{K}_S^{\oplus r} \to X^{\vee} \to 0,$$

$$(\sharp_2) \quad 0 \to \operatorname{Hom}_S(M, M) \to M^{\oplus r} \to \operatorname{Hom}_S(X, M).$$

Naoki Taniguchi (Meiji University)

< 67 ▶

Proof of assertion (1) of Theorem 1.4 Since $S = Hom_S(M, M)$, we have by (\sharp_2)

$$(\sharp_3) \quad 0 \to S \xrightarrow{\psi} M^{\oplus r} \to \operatorname{Hom}_S(X, M),$$

where $\psi(1) = (x_1, x_2, \dots, x_r)$.

By

$$(\sharp_0) \quad 0 \to X \to S^{\oplus r} \xrightarrow{\varphi} M \to 0.$$

we get

$$\ell_S(X) = r \cdot \ell_S(S) - \ell_S(M) = re - e = (r - 1)e,$$

where e = e(R).

3

(日) (周) (三) (三)

Proof of assertion (1) of Theorem 1.4

$$(\sharp_1) \quad 0 \to M^{\vee} \to \mathcal{K}_S^{\oplus r} \to X^{\vee} \to 0,$$

we have

$$q := \mu_S(X^{\vee}) \ge \mu_S(\mathcal{K}_S^{\oplus r}) - \mu_S(M^{\vee}) = r \cdot \mu_S(\mathcal{K}_S) - \mathcal{r}_S(M).$$

Therefore

$$(r-1)e = \ell_S(X) \ge \ell_S((0):_X \mathfrak{n}) = q \ge r^2 s - s = s(r^2 - 1).$$

Thus

$$e \ge s(r+1),$$

since $r \geq 2$.

3

(日) (同) (三) (三)

Proof of assertion (1) of Theorem 1.4.

Suppose that e = s(r+1). Then $\mathfrak{n} \cdot \operatorname{Hom}_S(X, M) = (0)$. By

$$(\sharp_3) \quad 0 \to S \xrightarrow{\psi} M^{\oplus r} \to \operatorname{Hom}_S(X, M),$$

we have

$$\mathfrak{n} \cdot M^{\oplus r} \subseteq S \cdot (x_1, x_2, \dots, x_r),$$

and therefore

$$\mathfrak{n}^2 M = (0).$$

Thus $\mathfrak{n}M \subseteq (0) :_M \mathfrak{n}$. Consequently

$$s = r_S(M) = \ell_S((0) :_M \mathfrak{n}) \geq \ell_S(\mathfrak{n}M) = \ell_S(M) - \ell_S(M/\mathfrak{n}M)$$
$$= e - r = s(r+1) - r.$$

Hence $0 \ge rs - r = r(s - 1)$, which is impossible.

Corollary 3.2

Let R be a Gorenstein local ring with dim R = 1 and $e(R) \le 6$. Let I be a faithful ideal of R. If

 $I \otimes_R \operatorname{Hom}_R(I, R)$ is torsionfree,

then I is principal.

We also prove the following theorems.

Theorem 3.3

Assume that $\mathfrak{m}\overline{R} \subseteq R$. Let I be a faithful fractional ideal of R. If $I \otimes_R I^{\vee}$ is torsionfree, then $I \cong R$ or K_R .

Here \overline{R} stands for the integral closure of R.

Theorem 3.4

Assume that $\mu_R(\mathfrak{m}) = e(R)$. Let I be a faithful ideal of R. If $I \otimes_R I^{\vee} \cong K_R$, then $I \cong R$ or K_R .

Let k be a field.

Proposition 3.5

Let $R = k[[t^a, t^{a+1}, \dots, t^{2a-1}]]$ $(a \ge 1)$ be the semigroup ring and $I \ne (0)$ an ideal of R. If $I \otimes_R I^{\vee}$ is torsionfree, then $I \cong R$ or K_R .

Corollary 3.6

Let $R = k[[t^a, t^{a+1}, ..., t^{2a-2}]]$ $(a \ge 3)$ be the semigroup ring and I an ideal of R. If $I \otimes_R \operatorname{Hom}_R(I, R)$ is torsionfree, then I is principal.

イロト 不得下 イヨト イヨト 二日

Proof of Corollary 3.6.

Notice that R is a Gorenstein local ring with $R : \mathfrak{m} = R + kt^{2a-1}$. Suppose that $I \not\cong R$. Then $R \subsetneq B := I : I$ and therefore

 $t^{2a-1} \in B,$

whence

$$R \subseteq S := k[[t^a, t^{a+1}, \dots, t^{2a-1}]] \subseteq B.$$

Therefore $I \otimes_S \operatorname{Hom}_S(I, \operatorname{K}_S)$ is S-torsionfree, so that

$$I \cong S$$
 or $I \cong K_S$

as an S-module by Proposition 3.5. Hence $I \cong R$ by Change of rings, which is contradiction.

Remark 3.7

Corollary 3.6 gives a new class of one-dimensional Gorenstein local domains for which Conjecture 1.2 holds true.

For example, take a = 5. Then

$$R = k[[t^5, t^6, t^7, t^8]]$$

is Gorenstein, but not complete intersection.

Conjecture 1.2

Let R be a Gorenstein local domain with $\dim R = 1$ and I an ideal of R. If $I \otimes_R \operatorname{Hom}_R(I, R)$ is torsionfree, then I is principal.

Remark 3.7

Corollary 3.6 gives a new class of one-dimensional Gorenstein local domains for which Conjecture 1.2 holds true.

For example, take a = 5. Then

$$R = k[[t^5, t^6, t^7, t^8]]$$

is Gorenstein, but not complete intersection.

Conjecture 1.2

Let R be a Gorenstein local domain with dim R = 1 and I an ideal of R. If $I \otimes_R \operatorname{Hom}_R(I, R)$ is torsionfree, then I is principal.

§4 Numerical semigroup rings

Setting 4.1

Let $0 < a_1 < a_2 < \dots < a_\ell \in \mathbb{Z}$ such that $gcd(a_1, a_2, \dots, a_\ell) = 1$.

We set

•
$$H = \langle a_1, a_2, ..., a_\ell \rangle := \{ \sum_{i=1}^{\ell} c_i a_i \mid 0 \le c_i \in \mathbb{Z} \}$$

• $R = k[[H]] := k[[t^{a_1}, t^{a_2}, ..., t^{a_\ell}]] \subseteq V = k[[t]]$
• $\mathfrak{m} = (t^{a_1}, t^{a_2}, ..., t^{a_\ell})$ the maximal ideal of R
• $c = c(H) := \max(\mathbb{Z} \setminus H) + 1$ the conductor of H
• $\mathfrak{c} := R : V = t^c V$

Notice that

- R is a C-M local domain with $\dim R = 1$ and $V = \overline{R}$.
- $e(R) = a_1 = \mu_R(V).$

Definition 4.2

Let $I \in \mathcal{F}$. Then I is said to be <u>a monomial ideal</u>, if

$$I = \sum_{n \in \Lambda} Rt^n$$

for some $\Lambda \subseteq \mathbb{Z}$.

Set

 $\mathcal{M} = \{ I \in \mathcal{F} \mid I \text{ is a monomial ideal} \}.$

A (10) F (10)

Notice that

- R is a C-M local domain with $\dim R = 1$ and $V = \overline{R}$.
- $e(R) = a_1 = \mu_R(V).$

Definition 4.2 Let $I \in \mathcal{F}$. Then I is said to be <u>a monomial ideal</u>, if

$$I = \sum_{n \in \Lambda} Rt^n$$

for some $\Lambda \subseteq \mathbb{Z}$.

Set

 $\mathcal{M} = \{I \in \mathcal{F} \mid I \text{ is a monomial ideal}\}.$

Passing to the monomial ideal $t^{-q}I$ for some $q \in \mathbb{Z}$, we may assume

$R \subseteq I \subseteq V.$

A canonical ideal K_R of R is given by

$$\mathbf{K}_R = \sum_{n \in \mathbb{Z} \setminus H} R t^{a-n}$$

where a = c(H) - 1 (= max($\mathbb{Z} \setminus H$)). Therefore

 $a-n \not\in H \iff t^n \in \mathcal{K}_R$

for $\forall n \in \mathbb{Z}$.

Passing to the monomial ideal $t^{-q}I$ for some $q \in \mathbb{Z}$, we may assume

 $R\subseteq I\subseteq V.$

A canonical ideal K_R of R is given by

$$\mathbf{K}_R = \sum_{n \in \mathbb{Z} \setminus H} R t^{a-n}$$

where a = c(H) - 1 (= max($\mathbb{Z} \setminus H$)). Therefore

$$a - n \notin H \iff t^n \in \mathbf{K}_R$$

for $\forall n \in \mathbb{Z}$.

From now on, we assume that $e(R) = a_1 \ge 2$. Set

 $\alpha_i = \max\{n \in \mathbb{Z} \setminus H \mid n \equiv i \mod e\} \quad (0 \le i \le e - 1)$

and

$$\mathcal{S} = \{ \alpha_i \mid 1 \le i \le e - 1 \}.$$

Hence

$$\alpha_0 = -\operatorname{e}(R), \ \sharp \mathcal{S} = \operatorname{e}(R) - 1, \ a = \max \mathcal{S} \ \text{ and } \ \alpha_i \geq i \ (1 \leq \forall i \leq e-1).$$

Fact 4.3

•
$$\mathbf{K}_R = \sum_{s \in \mathcal{S}} Rt^{a-s}$$

{t^{a-s} | s ∈ S s.t. t^s ∈ R : m} forms a minimal system of generators for K_R.

< 67 ▶

Example 4.4

Let $H = \langle 7, 8, 10 \rangle$. The figure of H is the following (the gray part).

0	1	2	3	4	5	6
		9				
14	15	16	17	18	<u>19</u>	20
21	22	23	24	25	26	27
28						

We have c = c(H) = 20, a = 19,

 $\mathcal{S} = \{1, 9, 3, 11, 19, 13\}, \text{ and}$ $a - \mathcal{S} = \{18, 10, 16, 8, 0, 6\}.$

Therefore

$$\mathbf{K}_R = (t^{18}, t^{10}, t^{16}, t^8, 1, t^6) = (1, t^6).$$

< 67 ▶

Example 4.4

Let $H = \langle 7, 8, 10 \rangle$. The figure of H is the following (the gray part).

We have c = c(H) = 20, a = 19,

$$\mathcal{S} = \{1, 9, 3, 11, 19, 13\}, \text{ and}$$

$$a - \mathcal{S} = \{18, 10, 16, 8, 0, 6\}.$$

Therefore

$$K_R = (t^{18}, t^{10}, t^{16}, t^8, 1, t^6) = (1, t^6).$$

4 王

- ∢ ⊢⊒ →

The goal of this section is the following.

Theorem 4.5 Let $b = \min S$ and suppose $t^b \in R : \mathfrak{m}$. Let $I \in \mathcal{M}$ such that $R \subseteq I \subseteq V$. If $I \otimes_R I^{\vee} \cong K_R$, then $I \cong R$ or K_R .

Corollary 4.6

Suppose that $\mu_R(\mathfrak{m}) = e(R)$. Let $I \in \mathcal{M}$ such that $R \subseteq I \subseteq V$. If $I \otimes_R I^{\vee} \cong K_R$, then $I \cong R$ or $I \cong K_R$.

The goal of this section is the following.

Theorem 4.5 Let $b = \min S$ and suppose $t^b \in R : \mathfrak{m}$. Let $I \in \mathcal{M}$ such that $R \subseteq I \subseteq V$. If $I \otimes_R I^{\vee} \cong K_R$, then $I \cong R$ or K_R .

Corollary 4.6

Suppose that $\mu_R(\mathfrak{m}) = \mathfrak{e}(R)$. Let $I \in \mathcal{M}$ such that $R \subseteq I \subseteq V$. If $I \otimes_R I^{\vee} \cong K_R$, then $I \cong R$ or $I \cong K_R$.

Example 4.7

Let $H = \langle 7, 22, 23, 25, 38, 40 \rangle$. Then $S = \{15, 16, 18, 33, 41\}$. We have a = 41, b = 15, and

$$\mathfrak{m} \cdot t^{15} \subseteq R,$$

but

$$\mu_R(\mathfrak{m}) = 6 < \mathbf{e}(R) = 7.$$

§5 The case where e(R) = 7

In this section, we maintain Setting 4.1.

Lemma 5.1

Let $I \in \mathcal{M}$ such that $R \subseteq I \subseteq V$. Suppose that

$$\mu_R(I) = \mu_R(J) = 2, \quad IJ = K_R \text{ and } \mu_R(K_R) = 4.$$

Then

$$\mathbf{e}(R) = a_1 \ge 8,$$

where $J = K_R : I$.

- 4 同 6 4 日 6 4 日 6

Theorem 5.2

Suppose that $e(R) = a_1 \leq 7$. Let $I \in M$. If $I \otimes_R I^{\vee}$ is torsionfree, then $I \cong R$ or K_R .

Proof.

We may assume that $I \otimes_R I^{\vee} \cong K_R$. Suppose that $I \not\cong R$ and $I \not\cong K_R$. Then

$$4 \le \mu_R(I) \cdot \mu_R(I^{\vee}) = \mu_R(\mathbf{K}_R) = \mathbf{r}(R) \le \mathbf{e}(R) - 1 \le 6.$$

If r(R) = 6, then r(R) = e(R) - 1. Thus

 $\mu_R(\mathfrak{m}) = \mathrm{e}(R) = 7$

which is contradiction. Hence $\mathbf{r}(R)=4$, so that $\mu_R(I)=\mu_R(I^\vee)=2$ which violates Lemma 5.1.

Naoki Taniguchi (Meiji University)

Corollary 5.3 Suppose that R = k[[H]] is Gorenstein with $e(R) \le 7$. Let $I \in M$. If $I \otimes_R \operatorname{Hom}_R(I, R)$ is torsionfree,

then I is principal.

§6 How to compute the torsion part $T(I \otimes_R J)$

Let (R, \mathfrak{m}) be a C-M local ring with dim R = 1. Let

$$I = (1, f) \ (= R + Rf) \in \mathcal{F}$$

where $f \in F \setminus R$.

I heorem 6.1 Let $J \in \mathcal{F}$. Then

 $(J:I)/(R:I)J \cong \mathbb{T}(I \otimes_R J), \ \overline{c} \longmapsto f \otimes c - 1 \otimes cf$

as an R-module.

§6 How to compute the torsion part $T(I \otimes_R J)$

Let (R, \mathfrak{m}) be a C-M local ring with dim R = 1. Let

$$I = (1, f) \ (= R + Rf) \in \mathcal{F}$$

where $f \in F \setminus R$.

Theorem 6.1 Let $J \in \mathcal{F}$. Then

 $(J:I)/(R:I)J \cong \mathrm{T}(I\otimes_R J), \ \ \overline{c}\longmapsto f\otimes c-1\otimes cf$

as an R-module.

§7 Examples

Let $I \in \mathcal{M}$. We set $J = K_R : I$.

<u>Condition</u> : $IJ = K_R$ and $\mu_R(K_R) = 4$

Example 7.1

Let $R = k[[t^8, t^{11}, t^{14}, t^{15}]]$. Then $K_R = (1, t, t^3, t^4)$. We take I = (1, t) and set $J = K_R : I$. Then

$$J = (1, t^3), IJ = K_R \text{ and } \mu_R(K_R) = 4,$$

but

 $\mathrm{T}(I\otimes_R J)\cong R/\mathfrak{m}.$

§7 Examples

Let $I \in \mathcal{M}$. We set $J = K_R : I$.

<u>Condition</u> : $IJ = K_R$ and $\mu_R(K_R) = 4$

Example 7.1

Let $R = k[[t^8, t^{11}, t^{14}, t^{15}]]$. Then $K_R = (1, t, t^3, t^4)$. We take I = (1, t) and set $J = K_R : I$. Then

$$J = (1, t^3), IJ = K_R \text{ and } \mu_R(K_R) = 4,$$

but

$$\mathrm{T}(I\otimes_R J)\cong R/\mathfrak{m}.$$

3

(日) (同) (三) (三)

Proof of Example 7.1

The figure of $H = \langle 8, 11, 14, 15 \rangle$ is the following.

0	1	2	3	4	5	6	7
8	9	10	11	12	13	14	15
16	<u>17</u>	<u>18</u>	19	<u>20</u>	<u>21</u>	22	23
24	25	26	27	28	29	30	31
32				• • •			

We have c(H) = 22, a = 21. Then $K_R = (1, t, t^3, t^4)$. Let I = (1, t). Then

$$J = K_R : I = (t^n \mid n \in \mathbb{Z} \text{ s.t. } 21 - n, 20 - n \notin H)$$

= (1, t³).

Hence $IJ = K_R$, $\mu_R(I) = \mu_R(J) = 2$ and $\mu_R(K_R) = 4$.

Proof of Example 7.1

0	1	2	3	4	5	6	7
8	9	10	11	12	13	14	15
16	<u>17</u>	<u>18</u>	19	<u>20</u>	<u>21</u>	22	23
24	25	26	27	28	29	30	31
32				• • •			

Since $R: I = (t^n \mid n \in H, n+1 \in H) = (t^{14}, t^{15}, t^{24}, t^{27})$, we get

 $(R:I)J = (t^{14}, t^{15}, t^{17}, t^{18}, t^{24}, t^{27}).$

On the other hand,

$$\begin{array}{lll} J:I &=& (t^n \mid 21-n, 20-n, 19-n \notin H) \\ &=& (t^{14}, t^{15}, \underline{t^{16}}, t^{17}, t^{18}). \end{array}$$

Hence $t^{16} \notin (R:I)J$ and $\mathfrak{m} \cdot t^{16} \subseteq (R:I)J$. Thus

$$\mathcal{T}(I \otimes_R J) \cong (J:I)/(R:I)J = R\overline{t^{16}} \cong R/\mathfrak{m}.$$

Remark 7.2

In the ring R of Example 7.1 $\not\exists$ monomial ideals I such that $I \ncong R, I \ncong K_R$, and $I \otimes_R I^{\lor}$ is torsionfree.

The following ideals also satisfy

 $IJ = K_R$ and $\mu_R(K_R) = 4$

but $I \otimes_R I^{\vee}$ is <u>not torsionfree</u>.

If $e(R) \ge 9$, then Conjecture 1.3 is <u>not true</u> in general.

Example 7.3

Let $R = k[[t^9, t^{10}, t^{11}, t^{12}, t^{15}]]$. Then $K_R = (1, t, t^3, t^4)$. Let I = (1, t) and put $J = K_R : I$. Then

$$J = (1, t^3), \ \mu_R(I) = \mu_R(J) = 2 \text{ and } \mu_R(K_R) = 4,$$

but $I \otimes_R I^{\vee}$ is <u>torsionfree</u>.

Thank you very much for your attention.

References

- M. AUSLANDER, Modules over unramified regular local rings, Illinois J. Math. 5 (1961), 631–647.
- [2] M. AUSLANDER AND I. REITEN, On a generalized version of the Nakayama conjecture, Proc. Amer. Math. Soc., 52(1975), 69–74.
- [3] O. CELIKBAS AND H. DAO, Necessary conditions for the depth formula over Cohen-Macaulay local rings, J. Pure Appl. Algebra 218 (2014), 522–530.
- [4] O. CELIKBAS AND R. TAKAHASHI, Auslander-Reiten conjecture and Auslander-Reiten duality, J. Algebra 382 (2013), 100–114.
- [5] S. GOTO, R. TAKAHASHI, N. TANIGUCHI AND H. L. TRUONG, Huneke-Wiegand conjecture and change of rings, J. Algebra 422 (2015), 33–52.
- [6] C. HUNEKE AND R. WIEGAND, Tensor products of modules, rigidity and local cohomology, Math. Scand. 81 (1997), 161–183.
- I. REITEN, The converse to a theorem of Sharp on Gorenstein modules, Proc. Amer. Math. Soc. 32 (1972), 417–420.

(日) (同) (三) (三)